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The ‘stability’ of flows in symmetric curved-walled channels is investigated by 
essentially combining Fraenkel’s ‘small ’ wall-curvature theory with the multiple- 
scaling (or WKB) method. The basic flow is characterized by the steady-state stream 
function 52, which varies ‘slowly’ in the streamwise direction. An asymptotic scheme 
is posed for 52 in such a way that at lowest order 52 represents a class of Jeffery-Hamel 
solutions. An infinitesimal disturbance is superimposed on the basic flow through a 
time-dependent stream function @, and the resulting linearized disturbance equation 
suggests that fixed-frequency disturbances with ‘ slowly ’ varying wavenumber are 
appropriate. The asymptotic scheme for @J yields the OrrSommerfeld equation at 
lowest order. Two classes of channels are considered. In  the first class the curvature 
is constant in sign, and under certain conditions they reduce to symmetric divergent 
straight-walled channels. In  the second class of channels the curvature varies in sign, 
and these may be more suitable for experimentation. A spatially dependent growth 
rate of the disturbance relative to the basic flow is defined; this forms the basis of 
the ‘stability’ analysis. Critical Reynolds numbers are deduced, below which the 
disturbance decays as it travels downstream, and above which the disturbance grows 
for a limited range in the streamwise direction. For the first class of channels the 
‘stability ’ analysis is carried out locally, and the dependence of the critical Reynolds 
numbers on curvature and higher-order terms is investigated. For the second class 
of channels the ‘stability’ analysis is carried out at various positions downstream, 
and an overall minimum critical Reynolds number is predicted for a range of channels 
and flows. 

1. Introduction 
During recent years there has been considerable interest in the ‘stability’ of slightly 

non-parallel flows considered in the light of the so-called WKB method. In this method 
the basic flow (for example the Blasius boundary layer or the flow between divergent 
planes) is expressed in such a way that it depends upon a ‘slow’ streamwise variable 
X = M, where E is a small parameter. It is then found that a time-dependent linear 
disturbance satisfies a differential equation whose coefficients depend on X. Thus 
fixed-frequency disturbances of the form 

x = exp (is - iwt) g( X, y ; E )  
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are appropriate. Here the frequency w is real, y is a cross-stream variable and 
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is assumed, so that the spatial growth rate to first order is -Qi, where Ql is the 
imaginary part of Q. Upon expanding the base flow and g ( X ,  y;  e )  in powers of e,  it 
is found that the growth rate in the streamwise direction is modified from that 
obtained by quasiparallel theory, thus leading to different values of the critical 
Reynolds number. 

This type of technique has been used, for example, by Bouthier (1972,1973), Gaster 
(1974) and Smith (1979) for the boundary layer, by Drazin (1974) for a model 
problem, by Eagles & Weissman (1975) for flow in a wedge, by Eagles & Smith (1980) 
for flow in a channel whose walls have equations y = H(X) and by Zollars & Krantz 
(1980) for film flow down a right-circular cone. 

The present investigation applies the technique%o flow in symmetric channels with 
‘small’ wall curvature within the framework of Fraenkel’s (1962, 1963) steady-state 
theory. In  92 the Navier-Stokes equations are written for an incompressible viscous 
fluid, and are expressed in terms of Fraenkel’s coordinate system (t;, q ) ,  where t; is 
the streamwise variable and q is the cross-stream variable. We consider the channels 
to be of unit depth, and to represent some section of much larger channels which are 
unrestricted in the direction normal to the (5, 7)-plane. In this way the flow properties 
are assumed to be independent of this direction, and the problem is reduced to a 
two-dimensional one. 

Two classes of symmetric curved-walled channels are defined using Fraenkel’s 
‘slowly’ varying complex function a ( ~ ) ,  where 7 = cr+isq and LT = et; are ‘slow’ 
variables. It can be shown (Fraenkel 1963) that la(a)l is approximately the local 
semidivergence of the channel walls. Certain restrictions are necessarily imposed on 
4 7 ) .  One restriction ensures that the local wall curvature is ‘small’. Fraenkel (1963) 
characterizes the ‘small’ curvature of the channel walls by the property 

llocal wall curvature x local channel half-width1 < E .  

Other restrictions ensure that the base flow is described by an asymptotic expansion 
whose first term satisfies the nonlinear ordinary differential equation (22), while 
higher-order terms are required to take account of curvature. This is achieved by 
choosing 4 7 )  and the Reynolds number R to satisfy 

Ra = O(1) as E + O ,  

Re = 6+0 as e+O. 

The choice of R = v / d  and 4 7 )  = &’(7), where a’(7) is some function not containing 
the small parameter E explicitly, satisfy the conditions. These points are discussed 
in 93. 

For general R and €4 there are infinitely many mathematical solutions to (22) 
(Rosenhead 1940). Fraenkel (1962) shows that for these solutions to be unique and 
to correspond to the simpler types, that is, with symmetric velocity profiles (about 
q = 0 )  and at most one region of reversed flow near the walls, then the range of w 
is restricted. The range considered here (0 < w < 5 )  is within the range defined by 
Frrtenkel and includes the case when reversed flow is first achieved (v z 4.7). 

It is important to note that, if the above relationship between R and d is enforced 
in the asymptotic development of the linear disturbance problem (26), then this will 
lead to a singular perturbation problem. In order to avoid this the relationship is 
relaxed, but is recalled in the final analysis of the results. The details of this approach 
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are discussed in $5. The asymptotic development now yields the classic Orr- 
Sommerfeld problem at lowest order, where the intrinsic frequency PI and the 
complex wavenumber k are functions of a ‘slow’ variable. 

The first choice of CC(T), (12), defines channels whose curvature is constant in sign 
(figure 1). Under a certain asymptotic limit (14b) these channels reduce to the 
straight-walled channels studied by Eagles & Weissman (1975). One aim of this 
investigation is to use this property, not merely to check their results by an 
independent method, but also to consider the effects of curvature and higher-order 
terms on both the steady-state (16) and linear-disturbance (26) problems. 

The results for the steady-state problem, which are presented in $4, show that, while 
higher-order terms compound any reversed flow near the walls (figure 2), curvature 
effects oppose and dominate higher-order effects (figure 3). The effects of including 
higher-order terms on the local ‘stability’ of the disturbance are small, but they do 
produce an interesting feature (figure 9). On the other hand the effects of curvature 
are more pronounced and are not negligible when calculating the critical Reynolds 
number R, (table 3, figure 13). 

The second choice of a(7), (56), defines channels whose curvature varies in sign 
(figure 17). The aim here is to investigate the local ‘stability’ of flows at different 
positions in the streamwise direction, and in doing so establish an overall criterion 
for ‘stability’ in the channel. These channels satisfy the conditions required by 
Fraenkel (1963), that is, a ( ~ ) - t O  as a+& 00 and 4 7 )  is real on 7 = 0. The results are 
presented in $8. The most ‘unstable’ regions in the channel are shown to be 
downstream of the position where the angle of divergence reaches its maximum value. 
A particular case for experimentation is illustrated. 

Shen’s (1961) arguments for measuring the temporal growth rate of the disturbance 
relative to the unsteady base flow are adapted for non-parallel basic flows ($6). A 
disturbance function d = E/E,  is used to define the spatial growth rate GRE(d) of 
the disturbance. We define E to be the mean kinetic-energy density of the disturbance 
(averaged over one period R I P )  and E, to be the kinetic-energy density of the basic 
flow. This definition implies that if GRE(E) < 0 the disturbance is decreasing 
relatively at  some value of u, and we say the flow is ‘locally stable’. Similarly, if 
GRS(,??) > 0 the disturbance is increasing relatively at some value of u, and we say 
the flow is ‘locally unstable ’. The terms ‘stable ’ and ‘unstable ’ are used in this special 
sense. The interpretation of ‘unstable ’, however, is not straightforward, since the flow 
may pass through a region of growth (‘locally unstable ’) followed by a region of decay 
(‘locally stable ’). For the channels considered here it is found that all disturbances 
that grow eventually decay far enough downstream. It may appear that the flow is 
stable in a global sense, since the disturbance does not grow for all u > u,, no matter 
how large GRS(d) is. Nevertheless, the mechanism is present for transferring energy 
from the basic flow to the disturbance, and for disturbances where GR,(d) is larger 
than some threshold value the flow in practice may be unstable. 

2. The governing equations 
Consider the Navier-Stokes equations in two dimensions for an incompressible 

viscous fluid. We can express these equations, using general orthogonal coordinates 
(al,a2), in terms of the dimensional stream function 121 (Goldstein 1938). With the 
usual denotation for V, we write 

a 
= vv4P. 
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The cordinate system to be used follows Fraenkel's (1963) notation, and is recalled 
here for reference. Fraenkel defines a conformal transformation Z = Z ( g )  by 

with 2 = X + i Y ((X, Y) denote the dimensional Cartesian coordinates) and 3 = 6 +  i7 
( (6 ,  7) denote the non-dimensional orthogonal coordinates). Here H is a dimensional 
scaling factor, and it can be shown that 2H is approximately the width of the channel 
corresponding to 6 = constant (Fraenkel 1962, 1963). The parameter 8 is the angle 
between the elements of the two systems. Fraenkel goes on to define K ( [ , T )  and A ( [ ,  7) 

and shows using (2) and (3) that K/H and h/H represent the curvatures in the Z-plane 
of the coordinate lines corresponding to 6 = constant and 7 = constant respectively. 
The curvatures of the channel walls are defined at 7 = + 1 .  

The form of (1) can be transformed in terms of Fraenkel's general orthogonal 
coordinates ( 5 , ~ )  with h, = h, = H, a, = and a2 = 7. The non-dimensional equation 
is found by setting 

bat 
P=MY,  H=bh, T=--, M (4) 

where M is defined to be half the volumetric flow rate per unit thickness and 2b is 
approximately the throat width of the channel under consideration at  6 = 0. Thus 
(1) may be written as 

{;( DP - 4 (.$+A i) + 4(d + A,) 

where De = a1/a62+a2/ay2, and the boundary conditions are given by 

Y = f l  a t V = + l ,  

where (6a) defines M and (6b) is the no-slip condition at the walls of the channel. 
The Reynolds number R is defined by 

M 
R'T, 

so that it does not vary from station to station in the channel (Rosenhead 1940); 
v is the kinematic viscosity. 

3. A symmetric curved-walled channel 
The non-dimensional forms of (2) and (3) are found using (4) and defining 2 = bz. 

Fraenkel (1963) shows that when the complex function p(5) in (3) is chosen to be a 
real constant a then a is exactly the semidivergence of the channel walls. For a more 
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general case Fraenkel introduces a small constant parameter E such that 

s l ;=r ,  E ~ = C T ,  s = = u + i q ,  (8) 

and posing PKJ = 4 7 )  ; (9) 

he goes on to show that the local semidivergence angle of the channel wall at 7 = + 1,  
S(5, l),  is approximately given by a(u), and at 7 = - 1,  S(5, - I ) ,  is approximately 
-a(a). In  this sense we may regard the slowly varying complex function a(7) as being 
like the local semidivergence of the channel walls upon setting 7 = 1.  However, the 
choice of a(7) depends on necessary conditions imposed on other parameters, namely 
R and 6. 

Briefly, Fraenkel’s asymptotic development of the solution to ( 5 )  (in steady-state 
form) is based on 

Fraenkel poses and justifies an asymptotic expansion in ascending powers of E. An 
alternative method, which he uses for computational purposes, is based on a double 
series expansion in ascending powers of l/R2 and 6, where 6 = RE. In  each case the 
following conditions had to be satisfied : 

E + O  with u, y fixed. (10) 

Ra = O(1) as E + O ,  ( 1 l a )  

RE = 6+0 as s+O. ( I l b )  

In the first channel a is chosen to be 

a(7) = IB+Am7, 

where m is a curvature parameter and 1 is a parameter whose significance is discussed 
in $8.  If m > 0 the physical curvature of the channel wall corresponding to 7 = + 1 
is always positive, while for m < 0 the equivalent physical curvature is negative. If 
m = 0 the channel is straight-walled with total angle of divergence 21d. The choice 
of a(7) above and 

ensure that (1 1 a, b) are satisfied. The interpretation of v will become apparent in $4. 
Under the asymptotic limit given by (10)  and this choice of a ( ~ ) ,  problems of 

unboundedness are encountered in the time-dependent analysis. In  particular, the 
expression for h, the non-dimensional scaling factor, is found to be 

upon substituting a(7) into (3) and camparing the integral with (2). This shows that 
h +  co asymptotically as s+O. One way of overcoming this problem is to introduce 
a new slow variable. It is not necessary for the steady-state problem, but i t  is essential 
for the time-dependent problem considered in 95. The new slow variable u1 is 
suggested by the form of h above, and it is defined by 

u1 = E&-, ( 1 4 a )  

d+O, ul, 7 fixed. (14b) 

which implies that u = E&T,. The new asymptotic scheme is 

Another expression for h, in terms of v1, is necessary (see ( 2 7 c ) ) .  
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FIGURE 1. A curved-walled channel given by 4 7 )  = d+dmT for m = 1 and 4 = 0.4. 

We can obtain an expression for z in terms of crl and 7 by substituting the relevant 
parameters in (3) and integrating twice; this yields 

5 
z = C,  I,, exp (lds++~rns2) ds+C2. (15) 

The real constants of integration C, and C,  correspond to different z-scales and choice 
of origin respectively. On choosing the boundary conditions to be 

we are able to show that (15) reduces to 

z - exp (crl + i&)/d 

under the new asymptotic limit given by (14b). In fact this particular form of z 
represents the modified polar coordinates of Eagles (1966, 1973) and Eagles & 
Weissman (1975, hereinafter referred to as EW) for the straight-walled channel of 
divergence angle 2$. 

A plot for this channel is illustrated in figure 1 for the case m = 1 and d = 0.4. An 
exact expression can be found for (15) in the form of a reduction formula, which can 
then be expanded in ascending powers of d. Alternatively, a Simpson's rule may be 
adapted for complex functions in the complex plane. 

4. The steady-state problem 

to obtain 
The equation satisfied by Ln(6 ,~)  can be deduced from ( 5 )  by letting Y = Q(t, 7) 

- 0  a t 7 = + 1 .  Q = + 1  a t q = f l ,  -- 
aa 
ar 



Flow stability in channels with small wall curvature 265 

We note that (16a) is nonlinear, and we assume that SZ is an odd function. This 
assumption is not implied by the boundary conditions given by (16b), but is 
consistent with those conditions. 

Following Fraenkel (1963), the asymptotic expansion for O(f, r ] )  is assumed to be 
of the form 

Q(E, r ] ;  w, m) = ao(a, r ] ;  w, m) +dQ1(a, r ] ;  w, m)+d2,(a, r ] ;  w, m)+ .... (17) 

The necessary expressions for K and A in terms of powers of d can be found from (3) 
and (12). The equations for Q,, a,, SZ, etc. can be found by substituting (17) into 
(16a) and comparing powers of E! using aO/aE = E aQ/aa. These equations are given 
in Appendix (1 A).? The new slow variable a, is introduced by expanding each 
function Q,, 0,, SZ, etc. as a Taylor series about a = 0 using a = &a,. New functions 
are defined such that 

ao(a ,q ;w,m)  = ~~(r]~w)+Aa~~,(r]~w,m)+~a~~~(r]~w,m)+ ... , 
Ql(a, 7; 21, m) = 4(q; v)+da, q(r]; w, m) +€a: G,(r]; w, m)+ ..., 
O,(a, r] ; w, m) = Ho(r] ; v) + da, H,(r] ; 21, m) + €a; H,(r] ; 21, m) + . . . , 

sZ(f,v; V ,  m) = G,+E$(&+~,  G,) + e ( H 0 + a 1  F, +a:G,) + .... 

(18) 

(19) 

(20) 

(21) 

Of course, this expansion is expected to be useful for a, = O(1) with d small, that 
is with 6 = O(1/8),  as opposed to (17), which would be useful for E = O(l/s). The 
smaller range of E is the price we must pay to perform a stability analysis later. 

The relations (18)-(20) are substituted into the equations for O,, 52, and a,, and 
by comparing powers of d a set o f f  independent ordinary differential equations is 
obtained. The equation for Go is 

so that now 

where 

d4G0 dG d2Go - o, 
-+2vl>- - 
dT4 dr] dq2 

- 0  a t r ] = f l .  G o = f l ,  2- 
dG 

dr] 

We note that Go is a nonlinear function. For different values of w we obtain a family 
of velocity profiles dGo/dr], some of these with reversed flow near r ]  = f 1. This 
equation for Go is identical with the equation for G defined by Fraenkel(l962, (2.1 a ) )  
with u+O and Ru fixed. Any observed reverse flow is regular; that is, separation and 
reattachment can occur without singularities (Fraenkel 1962, p. 133). 

The full equations satisfied by G,, G,, 4, l( and Ho are stated in Appendix (1 B). 
They have a general form, which may be expressed as 

where 

The equations are linear, and 9 is different for each function. The assumption that 
51 is odd implies symmetric velocity profiles for the steady-state flow. 

Editor. 
t All the Appendices are kept in the Editorial Office and may be obtained on request to the 
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9 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

v = 3.572 
R = 30, sf = 0.19 

4 C; + EH; 
1.856 1 .m 
1.813 1.817 
1.691 1.694 
1.504 1.505 
1.273 1.273 
1.021 1.019 
0.7682 0.7657 
0.5309 0.5279 
0.3200 0.3172 
0.1420 0.1402 
0 0 

v = 4.71 
R = 10.5, d = 0.449 

G 
2.187 
2.113 
1.906 
1.604 
1.256 
0.9069 
0.5934 
0.3375 
0.1509 
0.079 
0 

Gi + € H i  
2.339 
2.251 
2.005 
1.650 
1.248 
0.8555 
0.5143 
0.2494 
0.0729 

0 
-0.0106 

TABLE 1. The steady-state velocity profiles with and without the O(s) correction for different 
straight-walled channels (m = 0) 

anla? 
FIGURE 2. The effect of the O(s) correction to the steady-state velocity profile in the 

straight-walled channel for 'u = 4.71, R = 10.5: ----, O(1); -, O(E). 

The scheme to solve for Go is essentially a perturbation about Poiseuille flow. The 
function is expressed as an ascending power series in v :  

m 

r-o 

This scheme has two important advantages. The first is that the perturbation 
functions wr are unique and need only be computed once. The second is that the 
resulting matrix equation defining w, need only be modified marginally in order to 
incorporate it for solving (23a). Details of this perturbation scheme and numerical 
checks on the accuracy of the asymptotic expansion (17) can be found in Gcorgiou 
& Ellinas (1 985). 

The range of w considered (0 < v < 5 )  is necessarily restricted (Fraenkel 1962) to 

Go = w,v'. (24) 
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1 .o 

0.8 

0.6 

0.4 

0.2 

0 
0.4 0.8 1.2 1.6 2.0 2.4 aQ/al 

U 
0.4 0.8 1.2 1.6 2.0 2.4 2.8 

FIGURE 3. The transverse behaviour of the steady-state profile for the curved- (m = 1) and 
straight-walled (m = 0) channels, at different positions downstream, with (a) v = 4.093, R = 30; 
( b )  v = 4.71, R = 30: ----, m = 0; -, m = 1. 

ensure that Go is unique, and at most one region of reversed flow is observed near 
the walls of the channel. 

The divergent or convergent plane-walled channel (straight-walled) solution may 
be retrieved asymptotically, E+O,  v1, 7 and m fixed or by letting m = 0. The 
simplified system with m = 0 leads to 

Q = Go+eH0+ ..., (25) 

where G, = Ga = 4 = F, = 0 satisfy (23a). The effect, as a result of including the 
higher-order term do, is probably best described using the velocity profile aG?/aq. 
The results in table 1 demonstrate the tendency of increased velocity at the centre 
and decreased velocity near the walls. In an extreme case of v = 4.71 and R = 10.5 
some reversed flow is observed with this additional term, and this is illustrated in 
figure 2. The additionitl term corresponds to the O ( d )  term omitted by EW. The terms 
Gi and Hi represent derivatives with respect to 7 in table 1. 

The effects of curvature are realized by a comparison between the velocity profiles 
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" 
0.4 0.8 1.2 1.6 2.0 2.4 asz/av 

FIGURE 4. The transverse behaviour of the steady-state profile for the curved- (m = - 1) and 
straight-walled (m = 0) channels, at different positions downstream, with v = 3.572 and R = 30: 
____ , m = O ; -  , m = - 1 .  

in straight- and curved-walled channels. These are illustrated in figures 3 (a, b), where 
velocity profiles, at different downstream positions, for the case m = 1, are compared 
with those for the case m = 0. We note that, at crl = 0, the angle of divergence is the 
same for both the straight- and curved-walled channels, and the O(s) correction is 
included. At crl = 0, when m > 0 the velocity at the centre tends to decrease, while 
at the walls the velocity tends to increase. This is precisely the opposite effect of the 
higher-order terms. However, as we move downstream, these dominant curvature 
effects increase the velocity at  the centre and decrease it near the walls. This 
somewhat surprising result at crl = 0 may be explained in the following way. If m > 0 
then the angle of divergence is greater than in the corresponding straight-walled case 
for crl > 0. Similarly it is less for crl < 0. The velocity for m > 0 and crl < 0 is then 
expected to be smaller at the centre than its straight-walled counterpart. Upstream 
influence causes this to persist to crl = 0 and possibly a little beyond. If this were 
the case we might then expect the opposite to happen at crl = 0 when m < 0. The 
graph in figure 4, for the case m = - 1, shows this to be so. 

5. The time-dependent problem 
We now set Y(6, q,  t )  = a([, q )  + @(& q,  t )  and linearize @ to obtain 

(26 b 1 
a@ 

where @ = - = O  a t q = + l .  

We take @ to be even in q, since this is generally known to produce the most-unstable 
disturbances. The coefficients of (26a) are independent of time and are slowly varying 
with 6; therefore the stream function of the disturbance for constant frequencies 
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(274  

where C.C. represents the complex conjugate of the preceding term, and #? is chosen 
to be real. The slow variation of the coefficients in the [-direction is allowed for by 
the complex wavenumber k(a,), which is defined in terms of the complex phase 
function O ( [ ) ,  where 

may be chosen to be of the form 

w, 'I, t)  = $(a,, 'I) exp (i[e(&-PI)+c.c., 

The necessary expression for h in powers of d is established by integrating (3) with 
the boundary conditions dz/d[ = 1 at 6 = 0 and comparing with (2). In  this case it 
is exact and is given by 

h = exp [la, + !jdrna: - @&2]. (274 

In the steady-state case a certain condition is imposed on R and ef, (13a). This 
condition is relaxed for the time-dependent analysis. Now R and d are treated as 
independent parameters in the asymptotic development, but (13a) is returned to in 
the final analysis of the results. This technique has already been used extensively by 
other authors (EW; Gaster 1974; Bouthier 1972, 1973; Ling & Reynolds 1973; 
Lanchon & Eckhaus 1964; Eagles & Smith 1980), where supportive arguments are 
given for this relaxation. Also, Allmen (1980) has shown the procedure to be accurate 
for certain channel flows by an independent numerical method. The alternative 
approach, of retaining the condition, leads to a singular perturbation problem of 
extreme complexity, and, although the present method is difficult to justify theore- 
tically (see EW for an elementary example of how i t  works), we feel that its use is 
justified in the light of supporting and consistent results of the other workers cited 
above. We continue the asymptotic development and use 

$(a1, 'I; R, v, m) = $ O ( f l l ,  'I; R,  v, m) +&,(a,, 'I; R, v, m) +C$Z(fll,  'I; K v ,  m) + .... 
(28) 

The function $ is conveniently and arbitrarily normalized by $(O,  0) = 1. This is 
equivalently expressed as 

$o(o, 0) = 1,  $$(O,  0) = 0, i 2 1.  (29) 

L$o = 0, (304  

Substituting (28) into (26a) and comparing powers of d, the following set of equations 
is obtained : 

where 

This equation at 0(1) represents the classic Orr-Sommerfeld problem, in which the 
frequency and wavenumber are replaced by functions of the slow variable a,. For 
a given (real) and fixed a1 it is an eigenvalue problem in k. The O(&) equation is 
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where 

The additional operators L,, L,, L3 and L4 are defined in Appendix (2A) .  It is 
interesting a t  this stage to  note that the term &ima; in L, and L4 is a direct 
consequence of curvature, and would disappear on setting m = 0. For this case L, 
L,, L, and L3 become the operators for the straight-walled channel, and are the same 
operators defined in the investigation by EW. Continuing to the O(s) equation, we 
obtain 

G. A .  Georgiou and P .  M .  Eagles 

(31 b )  $,(a1, f 1 )  = L ( c r 1 ,  a$ f 1 )  = 0. 
a9 

a$ dk w o  dk 
L$2 = L1L+pL2 acr, da, $1+(L3+L4)  $ 1 + ( M 1 + M 2 ) F + d a ,  (M3+M4)  $0 

M, + M, + M, +E( 4 ~ +  i 3) +-(-),) 3 dk $, - iL, !?% (32a) 
da; dq R du, aa; 3 

(32b) where 

The extra operators M,, ..., M, are a direct consequence of curvature and higher- 
order terms from the steady-state analysis. Some of these will simplify a great deal 
upon setting m = 0, while others will vanish completely. They are defined in 
Appendix (2 B). We note that (32a) was not established by EW for their straight- 
walled case. 

From the theory of homogeneous equations a characteristic equation (eigenrelation) 
must be satisfied for the existence of a non-trivial solution. This eigenrelation, 
k (a l )  = F(/?,, R, v), forms the basis for any iterative schemes to compute the eigen- 
values (Georgiou & Ellinas 1985). 

The variable a1 appears only as a parameter in (30a), and hence a solution may 
be found in the form 

(33) 

$,(a1, * 1 )  = >(q, a$ L- 1 )  = 0. 
39 

$,(a,, 9 )  = ~ , ( ~ , ) f , ( ~ , ~  9 ) ?  

where A, is called the amplitude, and the eigenfunctionf, is a solution to (30a) using 
(30b) for some fixed al. We normalizef, arbitrarily following (29), and choose 

fo(a, ,O) = 1 for all a,. (34) 

With this normalization the complex function A ,  may be interpreted as the amplitude 
of $, along the centre of the channel, but it is not the total amplitude. A different 
normalization of f, would correspond to a different interpretation for A,. 

A Runge-Kutta scheme of order four is used to  solve the homogeneous equation 
(30a) after the eigenvalues have been evaluated. To solve for A,  we need to  go to 
the O(d) disturbance equation (31 a) .  It can be shown that for a solution to exist 

51, ?, w1 d7 = 0, (35) 

where f, is the adjoint eigenfunction (Ince 1956). Using (33) and the solvability 
condition (35), we find 

dA0 -+H(u,) A,  = 0, 
da,  

where (29) and (34) imply 
A,(O) = 1 
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The complex function H(a,) is defined in terms of definite integrals, and these are 
stated in Appendix (2 A). The solution of the non-homogeneous equations (31 a)  and 
(32a) can be expressed in terms of the previous homogeneous solution. The stream 
functions q5,, q52 may be put in the form 

q5i ( f l l ,V)  =f,(al ,r)+Al(al)fo(al ,q) ,  i 2 1, (37a) 

(376) where 

If we wish to interpret A,(a,) ,  i 2 1, as the amplitude of $((a1, q )  along the centre 
of the channel, then the normalizations on fi(a,, 7) are clear. All physical quantities 
such as growth rates (to be defined in $6) are unaffected by these arbitrary 
normalizations. As before, different normalizations on f,(cr,, q )  merely correspond to 
different At(al). Thus we choose 

f,(a,, f l )  =-(a1, aft f l )  = 0, i 2 1 .  
37 

!,(a,, 0) = 0, i 2 1, for all a,. (38) 

The functionsf, andf2 satisfy (31 a) and (32 a) respectively. The necessary eigenrelation 
for the homogeneous system implies that fl(ul, q )  are not unique solutions. In  fact 
an infinity of solutions exist for each fi(a,, q ) ,  and only particular solutions may be 
found. 

In order to solve for any A,(a,) it  is always necessary to go to the next-order 
equation and apply the solvability condition 

as before. We find by substituting (37 a) into the appropriate non-homogeneous 
equation and using (39) that 

dA, -+H(a,) A, = 9,(a1), i 2 1, 
da1 

where A,(O) = 0, i 3 1 .  (40b) 

For this analysis it is only necessary to go as far as A,. The function P,(a,) is defined 
for the case i = 1 in Appendix (2 B); it becomes obvious that for each amplitude 
function an increasing number of integrals are introduced as a result of new operators 
appearing in each higher-order non-homogeneous equation. 

Numerical checks were first carried out on!, and A,; these were also computed 
by EW for the straight-walled channel. In  addition to these, the independent checks 
on f , ,  and its derivatives, carried out on the boundary, showed self-consistency. The 
further extensive checks on fl and A,, which were not computed by EW for the 
straight-walled channel, validated the work so far. It is worth noting that when!, 
is correct it serves as a check on A,. Hence one important check on A, would be to 
solve (32a) for the function f 2 .  This lengthy equation was solved for this purpose, and 
the checks proved conclusive. 

6. The growth rates 
Quasiparallel theory says that each flow quantity (stream function, velocity etc.) 

has the same constant growth rate, and this is equal to - ki (ki is the imaginary part 
of k). The theory can only tell US whet'her a wave is growing or decaying at a particular 
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point and not as function of the downstream variable (EW). In this analysis, as in 
EW, k, is a function of the downstream variable, and, because of the inclusion of 
higher-order terms, different flow quantities have different growth rates. We define 
the spatial growth rate for any flow quantity (such as stream function and velocity 
components) by 

(41) 

and with this definition we find that - k i ( r l )  appears as the first-order term. The fact 
that different flow quantities have different growth raises the question : ‘ What gives 
a “true ” measure of the growth of a disturbance 1 ’ 

Shen (1961) gives an intuitive argument as to what ‘yardstick’ could be used to 
measure the growth or decay of a disturbance. A disturbance that appears to be 
growing might actually be decaying if it is measured relative to a base flow that is 
growing at a faster rate. A similar reasoning may apply for a disturbance that appears 
to be decaying (Lin 1951). This argument suggests that, in the case of measuring the 
growth of a wave based on a mean kinetic-energy density E, a more appropriate 
measurement is a relative mean kinetic-energy density 8, where 

a 
GR&Q) = (amPQ)-’,5(amPQ)? 

B = E/E, ,  (42) 
and E, is the kinetic-energy density of the basic flow. This idea is adapted for our 
spatially dependent basic flow. 

We define a mean kinetic-energy density per unit width in the streamwise direction, 
which is averaged over time and integrated across the channel (EW). It is expressed 

where are the mean-square velocities in the streamwise and transverse 
directions respectively. The scaling factor h, given by (27c), is used along with (27a) 
to establish expressions for u5 and uq in terms of $, since 

and 

From these expressions we can find the square of the velocities and the mean-square 
velocities averaged over one period RIB,  these are 

where (47 ) 

The growth rate of E, GR,(E), is defined using (41), but a factor oft  is necessary to 
ensure that -ki(al)  appears at O(1). Thus 
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Hence GR,(E) = - k , + d  -++A S,  -+mal+.... ( 2 1 )  (49) 

We note that, since q5 in (45a, b) and S,  contain powers of €2, (45a, b) and (49) are 
not strictly in ascending powers of €2. E, is given by 

1 

E 0 = ‘1 h(vi+vt)dy, (50) 
2 -1 

where the streamwise and transverse velocities vt and v,, respectively are given by 

By expressing these in ascending powers of d and substituting into (50), we obtain 

where 

Using (42), (46) and (52), we obtain 

(53) = 5 e-2ei r .  
Using (48) to define GRg(e), we have for the ‘true’ measure of the disturbance 

where 

GR#) = (54) 

Direct comparisons can be made between (52)-( 55) and the corresponding expressions 
in EW. To do this requires expressions in ascending powers of €2 explicitly up to the 
term in E! (EW did not establish the O(E) term). These explicit forms are derived from 
the equations above, and on setting m = 0 they agree identically with those in EW. 

7. The results of the numerical calculations 
First, in the case of m = 0 the present work represents an extension and a check 

on the work of EW to the next-order term. Such an extension is important because 
ki is numerically small and it is not certain that a series for the growth rates to O(d) 
is sufficiently accurate. 

We plot values of GR,(#) against PI. This enables us to choose and determine the 
range of frequencies for which GR,(,??) > 0. In figure 5 we see the effect of increasing 
R for a particular v. When R = 30 the curve does not cross the PI axis, thus 
GR@) < 0 for all PI. On the other hand, when R = 50, GR&@ > 0 between A 
and B. We note that, when m = 0, /3 and el always appear together in the form 
of PI. Thus by arbitrarily choosing el we can determine the range o f p  for which we 
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FIGURE 5. The general behaviour of the relative kinetic energy with the intrinsic frequency in a 

straight-walled channel, for increased Reynolds number, with v = 3.572. 

I Decay 

R 
FIW.RE 6. Neutral-stability curves at different orders for the straight-walled 

channel (m = 0) with ZI = 3.572: ----, EW; -, O(s) correction. 

can expect growth. Similarly, by arbitrarily choosing a frequency /3 we can determine 
the range of crL for which we can expect growth. 

The positions A and B in figure 5 define ‘ critical ’ points for fixed v and R. By taking 
different values of R, a set of critical points contribute to form a ‘neutral ’ curve. This 
procedure may be carried out for both the O ( d )  and O ( E )  forms of GRS(2). In figure 6 
a comparison is made between two neutral curves corresponding to the O ( d )  and 
O ( E )  forms of GRS(l?). Note that A and B in figure 5 are identified in figure 6. As we 
move up the line joining AB produced (fixed R) we are initially in a region of decay, 
then a region of growth, and finally a region of decay. These neutral curves each define 
a critical Reynolds number R,. If R > R, the disturbance grows for fixed frequencies, 
albeit for a limited range of cr, values, and we say the flow is unstable in this sense. 
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FIGURE 7. As figure 6, but with v = 4.093. 

" 5  7 9 11 13 15 17 19 R 
FIGURE 8. As figure 6, but with v = 4.71. 

On the other hand, if R < R, the disturbance decays for all frequencies and for all 
crl values, and we say the flow is stable in this sense. 

Further graphs (figures 7 and 8) are included to show the effect of increasing v. 
These show that some critical v exists, v,, about which the addition of higher-order 
terms make the flow more stable when v < v,, and more unstable when w > w,. A set 
of points (R,, v) can be established from such graphs, and some of these are tabulated 
in table 2. By plotting a graph of this table (figure 9) we can establish boundary curves 
for the O(d) and O(s) solutions. We return to the relationship (13a) between R and 
d in order to interpret the results illustrated in figure 9. Take as an example €4 = 0.1. 
As we move along the line defined by this €4, the combinations of R, and v to the 



276 G.  A .  Georgiou and P .  M .  Eagles 

2, Rc, O(E4 4, O ( 4  
3.572 38.6 40.5 
3.8 32.3 33.4 
4.093 25.4 25.5 
4.5 16.6 15.2 
4.71 12.6 10.2 

TABLE 2. Values of R,, for a range of v in a straight-walled channel (m = 0) ,  
with and without the O(E) correction 

10 I I I 1 I I I I I 

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 
0 

FIQURE 9. Boundary curves separating stable and unstable flow at different orders for the 
straight-walled channel: ----, EW; -, O(E)  correction. 

left of the boundary curves represent stable flow in the manner already described. 
Similarly, all points to the right represent unstable flow. The frequencies and 
positions may be established from curves such as those in figures 6-8. Allmen’s (1980) 
difect numerical attack on the problem of EW could be considered as the most 
accurate solution. Allmen did not provide a graph of R, versus v, but rather R versus 
8. A graph of R, versus v could nevertheless be plotted from Allmen’s results, and 
it shows the same feature as that illustrated in figure 9, but not as pronounced. This 
feature is not really noticeable when Rc is plotted against d, but it does exist. The 
destabilizing effect at larger values of v, due to higher-order terms, is interesting, as 
it is consistent with the reversed-flow effect they had on the steady-state velocity 
profile as illustrated in figure 2. These higher-order terms, however, make compara- 
tively little difference to the stability properties. This is in fact fairly surprising when 
one considers the relatively high values of d used ( A  = 0.46 in some cases). These 
results together with those of Allmen (1980) contribute a convincing check on the 
results of EW. 

Secondly, we consider the case when m + 0, and we must try to imagine the 
physical situation when interpreting or using the results. Our channel is part of a much 
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FIQTJRE 10. The downstream development of the relative kinetic energy for the curved-walled 

channel (m = 1)  with v = 4.093, R = 30, = 0.2: ----, m = O ; - , m = l .  

GRdJ9 
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0.2 - 

0.1 - __----  

FIQURE 11. An figure 10, but with v = 4.71, R = 20, @ = 0.12. 

larger channel, and, whereas the angle of divergence varies from point to point, the 
curvature is in fact either dways positive or negative. A channel whose curvature 
varies in sign is considered in $8. The results are essentially local results, but they 
do take into account curvature and downstream development. These results are much 
more realistic than those predicted by a purely local quasiparallel theory. In  the case 
of m = 0, Be is the same at all c1 stations because /3 and c1 always appear together 
as PI. This is not the case when m 9 0, since /3 and c1 can appear independently as 
well as in the form PI. 

We ask two questions: (i) ‘If the curved-walled channel has the same local angle 
of divergence as a wedge (m = 0), is the flow locally more or less stable than the wedge 
flow?’ (ii) ‘Is the wedge approximation reasonable for a channel with small wall 
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R=48 
R = 45 

-0.03 -0.02 -0.01 0 0.01 GR*(,$) 

I I I 1 1 I 

-0.03 -0.02 -0.01 0 0.01 0.02 ( j ~ ~ ( 0  

FIGURE 12. The behaviour of the relative kinetic energy with Reynolds number and 
frequency, for the curved-walled channel (m = 1)  at u1 = 0 with v = 3.672. 

curvature?’ To answer these questions, we compare the growth rates a t  ul = 0 
between the cases m = 0 and m 4 0. 

For the case m = 1 and (r, x 0 figures 10 and 11 show that GRS(I?) is numerically 
smaller than for the corresponding case m = 0. This is consistent with the effect of 
curvature on the basic flow, as illustrated in figure 3(a ) .  To be more definite as to 
which case is more stable a t  (rl = 0, we may compare R, values. In the curved-walled 
channel this needs to  be carried out specifically in the plane (rl = 0. Plotting /3 versus 
GRE(I?) (figure 12a) for fixed R a t  nl = 0, and R versus GR@) (figure 12b) for fixed 
p a t  u1 = 0, the behaviour is clear. We require the combination of R and /3 (R,,P,) 
in which the curve in figure 12(a) just touches the p-axis. An interpolation/extra- 
polation routine is used in which the initial guesses are given by (R, p) a t  (rl = 0 for 
the corresponding straight-walled case. Starting off with this initial set of (Re, p,) and 
two other arbitrary values of /3 (centred on pC), the corresponding values of GRS(I?) 
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RC RC 
V m = O  m = l  

3.572 40.5 44.6 
3.8 33.4 38.8 
4.093 25.5 33.8 
4.5 15.2 30.4 
4.71 10.2 30.3 

TABLE 3. Values of R, for a range of v in a straight-walled (m = 0) and 
curved-walled (m = 1) channel at c1 = 0 

40- \\ 

\ 

32 - \ 

\ - a , = O  
\ . , , 

24 - , 
\ 
\ , 

Stable - \ , 
16 - \ 

\ 
\ , 

\ , 
\ 

8 -  

v 

3.5 3.1 3.9 4.1 4.3 4.5 4.1 4.9 5.1 

FIGURE 13. Boundary curve separating stable and unstable flow for the 
curved-walled channel (m = 1) : ----, m = 0; -, m = I .  

are computed for fixed v. A new B, is interpolated corresponding to the minimum 
GR[(l?) (figure 12a). With this new B, and three consecutive values of R (centred on 
Rc), the values of GR@) are again computed. Another routine is used to interpolate 
or extrapolate an R corresponding to GR&,??) = 0 (figure 12b).  With this new set of 
(Rc ,Pc)  the process is repeated until convergence is achieved (Eagles & Smith 1980). 
The scheme is carried out for different values of v, and table 3 provides the results 
for the cases m = 0 and m = 1. These results are also illustrated in figure 13. To 
answer the first question partly, the results show that the case m = 1 is more stable 
than the case m = 0 a t  c1 = 0. 

The interpolation/extrapolation procedure may be checked by establishing 
the necessary neutral curves and using these to determine R,. This proved conclusive 
for all the values of v in table 3, and two particular neutral curves are illustrated in 
figures 14 and 15. To answer the first question completely we need to consider a range 
of m. For the case m = - 1 we find that at gl = 0 the flow appears to be more unstable 
than the case m = 0; this is consistent with the effect of curvature on the basic flow, 
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FIGURE 15. As figure 14, but with v = 4.093. 

as illustrated in figure 4. Other values of R, for a modest range of m demonstrate 
the general behaviour. A graph of Rc versus m for the case w = 3.572 is given in 
figure 16. This fairly linear relationship is useful in establishing R, for a particular 
channel curvature (through m) and a particular class of Jeffery-Hamel profiles 
(through w) . 

The results in table 3 also answer the second question. The wedge cannot be used 
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I 1 I I 

-2 - 1  0 1 2 3 
m 

FIQIJRE 16. The relationship between R, and the curvature 
parameter m at u, = 0 and v = 3.572. 

as a reasonable approximation to the curved-walled channel, since the final values 
of R, (m = 1) are significantly distant from the initial values provided by the results 
of the straight-walled channel. 

It is interesting to see what, if anything, predominantly accounts for the shifts in 
R, given in table 3. We have already seen that in the case of m = 0 a smaller velocity 
dong the centre of the channel (smaller v )  is clearly associated with a more stable 
flow and hence a higher R,. We may ask ‘since the velocity profiles at cr, = 0 for the 
case m = 1 are smaller (along the centre of the channel) than the corresponding cases 
of m = 0 (figures 3a and 3 b), does this fact account for most of the increase in R, T ’ 
To answer this question, we may examine the effect on R,, in the straight-walled 
channel, by substituting sd based on m = 1 for a particular v ,  in place of sd based on 
m = 0. This was done for cases available ; and typically for the case v = 3.572 the shift 
in R, went from 40.5 to 45.3. This is close to the result for m = 1 (R, = 44.6). We 
conclude that the shift is strongly influenced by the change in the steady state 
associated with curvature, rather than higher-order terms or non-parallel effects. 

8. A Fraenkel-type channel 

by 
This analysis is undertaken to study a more realistic channel. The channel is given 

a ( ~ )  = dm, sech27. (56) 

cr = a,+€b,, (57) 

We define cr (= €6) in terms of two new parameters a. and a,: 

where cro is a constant and represents any fixed position in the channel. The new slow 
variable crl is not the same as the previous a,, it is explicitly defined by (57) and 
3/36 = &!/aa,, as before. 

This channel satisifies the condition required by Fraenkel (1963) ; that is, a(7) +a 
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Y I  u =  1.2 

I 

- 1  

FIGURE 17. A Fraenkel-type channel given by a(7) = dml sech2r with E! = 0.4 and m, = 1 .  

real constant as u-t +_ 00, and a(7) is real on T,I = 0. All the equations and results are 
taken up to and including the O(s) term. The same notation is used as in the previous 
analysis, unless stated otherwise. Proceeding as before, we obtain 

z = 5 [ exp [m, tanh(;)]ds+K,. €2 

g o  

The real constants K, and K, correspond to different z-scales and choice of origin. 
The integral is evaluated by adapting Simpson’s rule along complex paths. Approxi- 
mate analytical expressions can be found for (58)  by reducing it to integrals of a 
complex function along real paths (Fraenkel 1963). These expressions illustrate an 
important difficulty associated with Fraenkel’s coordinate system. The ratio of the 
final throat width to the initial throat width can become ‘enormous’ for particular 
cases of interest. However, i t  is possible to choose the parameters defining the channel 
so that, in the u-range of interest, this ratio is not ‘enormous’. A particular channel 
is illustrated in figure 17 with €4 = 0.4 and m, = 1. This channel is within experimental 
limits, and interesting features such as reverse flow near the walls is possible. Without 
loss of generality, we take K ,  = 1 and K ,  = 0. 

The steady-state equations are derived in the same manner described in $4. New 
expressions can be found for K and h in powers of 8. The resulting equations for a,, 
SZ, and a, are very similar to the ones already given in Appendix (1  A). The only 
differences arise from the definition of a(7). In fact, expressions for the new equations 
may be deduced by referring to Appendix (1 A) and replacing 1 +mu by m, sech2 u. 
For a more general a(7), w(1 + m a )  is replaced by Ra(u). 

The new equations for Go, G,, G,, F,, & and H ,  are given in Appendix (3 A).  A 
comparison between these new equations and those in Appendix (1 B) reveals an 
interesting consistency. The parameter 1 originally defmed in (12) plays an important 
role in this analysis. In fact, the parameters 1 and m may be used as transformation 
parameters. The choice of 

1 = m, sech2 u,, m = -2m, secha u, tanh a, (59) 
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O(d)  

V Rc 8, 
3.0 99.12 1.48 

71.24 1.64 
62.92 1.68 
69.50 1.65 
95.99 1.50 

3.5 65.59 1.67 
46.93 1.78 
40.76 1.80 
44.32 1.79 
60.87 1.67 

4.0 46.81 1.78 
33.06 1.79 
27.32 1.75 
28.58 1.76 
40.13 1.80 

- 

Rc B c  

101.67 1.46 
73.85 1.60 
65.42 1.65 
71.97 1.62 
98.37 1.48 
68.31 1.63 
49.31 1.72 
42.78 1.74 
46.32 1.73 
63.20 1.66 
49.38 1.72 
34.88 1.73 
28.49 1.69 
29.83 1.70 
41.67 1.73 

U V 

-0.4 4.5 
-0.2 

0.0 
0.2 
0.4 

-0.4 4.7 
-0.2 

0.0 
0.2 
0.4 

-0.4 4.8 
-0.2 

0.0 
0.2 
0.4 

Rc B c  

35.94 1.81 
24.68 1.69 
17.21 1.37 
15.91 1.23 
25.70 1.71 
33.12 1.80 
22.16 1.64 
12.80 0.98 
20.33 1.54 
40.06 1.80 
32.01 1.79 
22.03 1.61 
9.62 0.82 

17.30 1.34 
37.00 1.80 

Rc 8, 
38.15 1.74 
25.89 1.66 
17.46 1.48 
14.77 1.44 
25.56 1.64 
35.16 1.74 
23.52 1.61 
13.24 1.44 
18.58 1.49 
41.13 1.73 
33.95 1.73 
22.65 1.59 
11.12 1.48 
13.63 1.41 
37.76 1.72 

U 

-0.4 
-0.2 

0.0 
0.2 
0.4 

-0.4 
-0.2 

0.0 
0.4 
0.6 

-0.4 
-0.2 

0.0 
0.4 
0.6 

TABLE 4. R, for a range of v, at various u-planes including and excluding the O(E) correction 

transforms the previous system to this new system, with the exception of ah 
additional term in the new equation for G,. This term, 

dG, d2Go 
-2wml sech2a, (3 tanh2a,- 1)-- 

dq dq2 ’ 

can be shown to result from the curvature varying more generally here. The addition 
of this term does not outweigh the important advantage of using (59), and hence 
utilizing the programs already coded in order to solve this new problem. 

The term h2 a(D2@)/at in (6) is bounded if @ is defined by 

@(& 7, t )  = &a19 7;  a,) exp [i(w9-/3’)1, (60) 

where 1 
and is the dimensionless time, scaled on the channel half-width a t  go. 

The equations for $,, #1 and 4, are given in Appendix (3 B). A comparison of these 
with the previous equations (30)-(32) show that the transformations in (59) are valid 
here also. The additional term in M,, -iBI m,[%:( 1 + 2 tanh2 a,)] (Df - k2), arises from 
the extra term in G,. The transformations are also valid for the growth rates, and 
they are implicitly contained in (54). 

The general scheme for the stability analysis is to consider fixed values of v and 
establish the R, value based on GR&#), at various a stations, using the method 
already described in 5 7. 

The shape of these channels gives us an insight into the behaviour of R,. We expect 
a higher R, far upstream and downstream, where the angle of divergence is closer 
to zero, than near a region where the angle of divergence reaches its maximum 
(v x 0). Thus for each w we are able to interpolate an overall minimum R,, R,*, 
corresponding to some B,* at some a-station. These R, are established for a range of v, 

10 FLM 159 
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v R,* 8, 
3.0 62.88 1.68 
3.5 40.67 1.80 
4.0 27.02 1.74 
4.5 15.10 1.23 
4.7 10.58 0.96 
4.8 7.42 0.85 

O(d 

R,' 8, U 

65.39 1.65 0.013 
42.67 1.74 0.030 
28.08 1.68 0.065 
14.16 1.43 0.140 
9.01 1.41 0.160 
6.36 1.39 0.178 

TABLE 5. The overall R,, R,*, for a range of v ,  including and excluding the O(E)  correction 

v = 3.0 

3.5 

4.0 

4.5 

4.7 
4.8 

I I 1 I 1 

-0.4 -0.2 0.0 0.2 0.4 
U 

Rc I 

I I I I 1 

-0.4 -0.2 0.0 0.2 0.4 
U 

FIQURE 18. The downstream development of R, in a Fraenkel-type channel (m, = I),  
for different v-values at different orders: ---- , O(&; -1 O(s). 
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FIQURE 19. Boundary curves separating stable and unstable flow for a 
Frankel-type channel at different orders: ----, O(&; -, O(s). 

including and excluding the O(E) terms. This is necessary in order to justify the 
asymptotic development. The results are presented in table 4. The corresponding 
interpolated results for (R,*, p,*) are presented in table 5. 

It is important to realize the problem associated with the steady-state flows 
characterized by v 2 4.7. The class of Jeffery-Hamel profiles considered here are 
restricted to the simpler symmetric types with at most one region of reversed flow 
near each wall. This occurs when the values of v are not much bigger than 4.7. Eagles 
(1966) shows that, when we have regions of reversed flow, negative wave velocities 
are more likely to occur, and the neutral-stability curve goes below the R-axis, when 
R is plotted against p. It may not be possible to achieve critical points on the lower 
branch for positive values of p no matter how small /3 is chosen. 

The results in table 4 are illustrated by figure 18(a), where R, is plotted against 
u for the O(s) solution. The differences between the O(d) and the O(s) solutions are 
shown in figure 18 (b). These graphs show that to a small extent the O(s) terms tend 
to stabilize the flow at all a-stations for certain values of v. A v exists, however, in 
which the O(E) term makes the flow more unstable. A similar result has already been 
discussed in $7. 

A plot of R,* versus v is illustrated in figure 19. We recall the interpretation of such 
a curve (given in $7). Consider a fixed channel (define €4 and m,), and gradually increase 
R. A point (R, v) in figure 19 would then move along one of the dotted straight lines. 
In the case d = 0.4 and m, = 1 we see that when R just passes R,* (a 13) the growth 
of the disturbance Characterized by GRE(#) is just positive, and, by referring to table 5 ,  
we can estimate (using the O(E)  solution) that this occurs at u, x 0.15 for a frequency 
/3 x 1.42. As R continues to increase, the disturbance grows for a range of u and for 
a band of frequencies. These results are very similar in a qualitative way to the results 
of Eagles & Smith (1980), who effectively solved their problem up to O ( d ) .  Allmen's 
(1980) numerical solution of their problem, which could be considered a more accurate 
solution, exhibits the same feature as the O(s) correction in this analysis. 

10-2 



286 G. A .  Georgiou and P .  M. Eagles 

9. Conclusion 
If we consider the steady-state problem for the straight-walled channel, we find 

that the higher-order corrections are directly responsible for the increase in the 
steady-state velocity at the centre of the channel, and a decrease near the walls. This 
effect is small in general, but for larger values of v it can cause reverse flow near the 
walls (figure 2). 

I n  the stability problem, the higher-order corrections do produce small shifts in 
the neutral-stability curves, even for relatively large values of d. A distinct stabilizing 
effect is present for values of v up to some vc, and a destabilizing effect for values of 
v above vc. This destabilizing effect for larger v is consistent with the reversed-flow 
effect (and hence more-unstable flow) described above. 

The comparison of flows in curved-walled channels (curvature constant in sign) 
with divergent straight-walled channels at positions where the angle of divergence 
is the same (rl = 0) shows that for m > 0 (divergent curved walls) the flow is more 
stable, while for m < 0 (convergent curved walls) the flow is more unstable. As we 
move further downstream (rl > 0 ) ,  we find perhaps the more natural results that  for 
m > 0 the flow is more unstable, and for m < 0 the flow is more stable. The major 
contributor to these effects is shown to be the change in SZ associated with curvature, 
rather than general non-parallel and higher-order terms. 

A Fraenkel-type channel, which might be constructed for experimentation, is 
shown to be more stable far upstream and downstream than near a region where the 
angle of divergence is a maximum (a = 0) - the most-unstable region being 
downstream of r = 0. The terms stable and unstable are used in a special sense in 
this investigation (§6), and i t  would be interesting to see how close the results 
presented here agree with those found in experiment. 

This investigation was completed while one of the authors (G. A. G.)  was a part-time 
student a t  The City University, London. 

One of the authors (G.A.G. )  would like to express his appreciation to Dr 
B. S. Massey (Department of Mechanical Engineering, University College London) 
for valuable discussions on fluid flow in channels. 
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